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On the pressure of boson and fermion systems

Ph de Smedtt and G Stragiert

Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium
Received 13 January 1982

Abstract. We prove that the pressure of a system of fermion particles, interacting through
a generalised mean field potential, is always greater than the pressure of an identical
system of boson particles at the same density and temperature, even when phase transitions
occur,

1. Introduction

It is generally assumed that, except for some systems where the interaction between
the particles is too strong, the pressure of a gas consisting of boson particles will
always be smaller than the pressure of an identical gas of fermion particles, at the
same density and temperature. This phenomenon should be due to the different
statistics. Indeed, the statistics cause the bosons (fermions) to suffer a statistical
attraction (repulsion). For free systems, this was indeed proved in the near classical
region (high temperature, low density) (Uhlenbeck and Gropper 1932, Landau and
Lifshitz 1958). Liboff (1981) was able to generalise these inequalities to all thermo-
dynamic states of finite temperature and thus for free systems.

Here we extend these results to systems with interactions of the mean field type.
Our method of proof shows clearly where the statistics come into the argument.
Essentially, the method is based on comparing the density fluctuations for the boson
and fermion systems. As our method does not depend in an essential way on explicit
calculations, there might be some hope that an analogous approach could be used for
systems with stable or superstable interactions.

In § 2, we deal with free systems. The pressure inequalities are derived both for
the finite volume case and for the thermodynamic limit. The thermodynamic limit
case has already been treated by Liboff, but the proof presented in this paper is
essentially different.

In § 3, we prove the theorem for systems with a generalised mean field interaction.
We treat systems without phase transitions of the first order, as well as systems in
which phase transitions of the first order can occur. As a byproduct, we show that in
the latter case the statistics also have an influence on the occurrence of the phase
transition, namely that the critical temperature above which no phase transition of
first order occurs is higher for the boson gas than for the fermion gas.

The ingredients for our systems are the following. Let A be an open bounded
region of R” with volume V(A); v is the dimension of the system. We denote by
F (F3) the usual boson (fermion) Fock space, constructed on L*(A, dx). The free
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Hamiltonian of the boson and the fermion system is given by
HZ . =Y ei(ma*(f)a(fn)—uNa 1)

where {fA},=0 are the eigenfunctions and £ (n) the corresponding eigenvalues of the
Laplacian —3A% on L*(A, dx) with the boundary conditions dy/dn = ovr; a*(f,), a(f,)
are the usual Fock creation and annihilation operators satisfying the canonical commu-
tation relations in the boson case, and the canonical anticommutation relations in the
fermion case. N, is the number operator and is equal to 3 a*(fa)a(fs). Finally, u
is the chemical potential and u < e7 (0) for the boson case, while u € R for the fermion
case. For the finite volume treatment, more general spectra £,(n) can be considered,
but for the thermodynamic limit we restrict for simplicity to the Laplacian. As the
thermodynamic limit for free systems is independent of o (Landau and Wilde 1979),
we drop the index o for notational convenience.

Finally we recall some definitions (see Ruelle 1969). The finite volume pressure
in the grand canonical ensemble is given by

pe®(A, B, u)=(1/BV(A)) log ZawA, B, 1) (2)
where the ZgF)(A, B, 1) is the grand canonical partition function, defined by

Zyw (A, B, n)=Trr: rrrexp (—BH4 ). 3)
The density is given by

1 TregenNaexp (—BHA L)
V(A) Treges exp (—BHA L)

pB(F)(A’ ﬁ’ l“')= (4)

or
pE A, B, 1) = wB@E,.(Na/ V(A))

where wae,), is the grand canonical Gibbs state at the chemical potential w and
temperature 1/8.

2. Pressure inequalities for free systems

2.1. The finite system
From (2), (3) and (4) it follows trivially that

d

—(’;B‘F’ (A, B, 1) = pae(A, By 1), 5)
m

1 dpge _ 08@.uNA) — (@5E..(NA)’

5 a M Bw N 6)

Furthermore, using (6) and the correlation inequalities (see Fannes and Verbeure
1977), we find

1 dps _wQ,“B(NA) 1 A A2
B dI.LB (A’ By #’B) - V(A) V(A) ngo (wB,uB (N(fn ))) s (7)
1 dor 0Fu(Na) 1

—F A = A Ay 2
B dMF (A’ B? PLF) V(A) V(A) n;o (wF,uF(N(fn ))) i (8)

where N(f2)=a*(fi)a(fy), ure Rand us <er(0).
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Let
G s(us, ur) = ps(A, B, us) — pr(A, B, ur) VureR, Yup <er(0).

We restrict our attention to the pairs (wg, ur) for which G, g(us, ur) = 0. These pairs
are the chemical potentials of systems at the same density. From (7) it follows that

9G (s, ur)/dus =dps(A, B, us)/dus #0, Vup<er(0).
Therefore, by the implicit function theorem, there exists an analytic function f such
that up = f(ur). We have
Theorem 2.1. For the Hamiltonian (1), and with the notations above

pr(A, B, f(ur)) <pr(A, B, ur) VureR, VB >0.
Proof. First remark that

lim f(ug)=—x, lim pe(A, B, urp)= lim pg(A, B, f(ur) =0.

HE—>—00 HF>—0 HE>

Therefore, it is sufficient to prove that

Alur) Ed—i; (pe(A, B, r)—po(A, B, fur) >0,  VupeR.

But
Alur) = pr(A, B, ur)(1-df(ur)/dur).
From (7) and (8)

df (ur) _ _dpe(A, B, 1)/t |ue
dMF de(A, ﬁ) “’)/dl"'If(ﬂ-F)

Therefore A(ug)>0, VurcR.

<1.

Analogously, one can prove the stronger results:
(@) ps(A, B, up) <B ™ ps(A, B, un) Vus<er(0);
(ii) B— PF(A, B, ILF) <pF(A9 B» nu'F) V.U'FE R-

2.2. The thermodynamic limit

Denote by Ay the centred cube with side L. Define for all 8 >0, for all x <0 in the
boson case and for all u € R in the fermion case,

(B, u)= iim pe®AL B 1), @ B, 1) = I{im (AL, B, 1)

These limits exist and are independent of the boundary conditions (Landau and Wilde
1979, Ruelle 1969). It is well known that for all u <0, ps(B, 1) <p., Where p. is the
critical density given by

= J d’k 1 forv=3
Pe™ ) @m)” exp GBKD) —1 ’

= 400 forv=1,2.

&)
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Using Griffiths’ lemma (see e.g. Hepp and Lieb 1973), one finds
dpem/du (B, 1) =peE(B, 1).

Furthermore, using the explicit expressions for ppr(B8, 1) given by

d’k 1

P~ | Gy T S0 o)
d'’k 1

PF(B:I»‘)=J(2#)V CXP[B(k2/2—/.L)]+1 VYueR, VB>0 (11)

(see e.g. Bratelli and Robinson 1981), one can prove, completely analogous to the
finite volume case, that

(i) up canbe written as a function of ug, or ug = f(ur), Vg such that pr(8, ur) <p.
or Vug: f(ur) <0;

(ii) df(ug)/dur<1implying that

pe(B, f(ur) <pr(B, ur), Vurp:f(ur) <O0. (12)

Next consider the case where the density of the systems is greater than p.. Let w(A;)
be defined by p =pg(A;z, B, u(AL)); then it is well known that lim; .. pw{Ar)=0, for
p =p. and

Il‘im pe(AL, B, n(AL) =ps(B, 0)= HTO pe(B, us)

-+ “B

(see e.g. Ziff et al 1977).

Define f~'(0) as

flO=limf s and ke =0, Yue=f(0)

Now, since ur- pa(B, f(ur)) is constant on ug=f~'(0), while ur-> pr(B, ur) is increas-

ing for all wF, it is sufficient to prove that pg(B, 0) < pr(8, f‘l(O)) to obtain the inequality
pe(B, f(ur) <pr(B, ur) for all ur=f1(0).

From (12)
ps(B, 0)<pr(B, f(0)). (13)

To prove that (13) is in fact a strict inequality, we look for a strictly positive lower
bound for pg(B, f(0)) — ps(B, 0). The argument here is a very simple one and is given
only for compieteness. Let f(ug)<0 and take ur> — A; then

pe(8, ur) ~po(B, flur) = | oe(8 ) (1- L) ay
°° u

=" oot (1-22) 0

2J"‘FdMJ' d’k . 1 N

-A (27)" {explB(k~/2—p)]+ 1}

As f(ur) < ur for all ug, we thus have

d’k 1

Qm)” {exp[B(k*/2+A)]+ 1}

lim (pe(8, ur) —po(B, ) = A |

wetf 1)
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Theorem 2.2. Under the assumptions above
(B, flur) <pr(B, ur) VureR, V3 >0.

Moreover, as in the finite volume case, one can also prove that

1 1
pa(B, flur) < E ps(B, flur)) = E pr(B, ur) <pe(B, ur) VureR, VB >0.

Recently theorem 2.2. was proved in Liboff (1981) by an explicit calculation of the
pressures. Our proof shows moreover that the result is a direct consequence of the
statistics.

3. Pressure inequalities for imperfect systems

We only consider systems in the thermodynamic limit. The Hamiltonian for the finite
fermion and boson system is given by

Halo= Y eam)a*(fav)a(far)—uNy, + V(AL)F(VNAL—>. (14)
n=0 (AL)

The ea,(n) are defined in the introduction (for simplicity, only Dirichlet boundary
conditions are considered). F is a continuously differentiable function satisfying
F(0)=0 and lim,.,« F'(x)=00. This last condition guarantees that exp(—8H A, ) is
trace class for all values of uw e Rand all A;.

We are interested in the density as a function of 8 and u. First consider the boson
gas. Let uo be any strictly negative number and let the map yg be defined on R* by

> log{l —exp[-B(Gk*— s (x)]}

yo) = (wh (1) - uo)r +67 [ 5

@n)
-6 [ S toglt —exp [-80K* - o)) (15)
where w5 (x) is defined by
d’k 1 )
- @n) pBOC—aLGN-1 ~ TEF<pe (16)
un(x)=0 if x =p. 17)

(p. is the critical density for boson condensation defined by (9)). Furthermore, define
(B, u) as the smallest values of x for which the function yg(x)+F(x)+ (uo—u)x
takes its minimal value.

Then, as Davies (1972) proved,

lim pp(Ar, B, u)=ps(B, 1)
Lo
for all points u of continuity of the map u - gg(B, 1), and for all these points, r(8, 1)
is the unique density of the system at the chemical potential x.
The technique of Davies can also be used for imperfect fermion systems, to obtain
an expression for the density in terms of 8 and u. For any woeR, let ye(x) be
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given by
/1 _ a1 d’k a2 1
o) = (b (2) - olx 67" | G 0wl +expl (K~ uk ()]
r)
-1 dvk 1,2 +
+p7 [ G logll reml-pdk ko) VaeR (18
)

where ur(x) is defined by

d’k 1
e= @n) explBOK — LGN+ 1 (19)

Again, if pr(8, ) is the smallest value of x for which the function yg(x)+F(x)+
(o—m)x reaches its minimal value, lim; .« pr(AL, B, u) = (B, u) for all points u
where the map u - §r(8, u) is continuous.

Remark that ye(x) and up(x) are written out in a slightly different way than in
Davies (1972), but it can easily be seen that they are equivalent. Also, although
Davies derives his result only in three dimensions, his technique can be used to derive
results in arbitrary dimensions.

In § 3.1, we treat the case where F is a twice continuously differentiable, strictly
convex function. In this case no phase transition of first order (i.e. no discontinuity
of paE)(B, 1) as a function of u) occurs. In § 3.2, we treat the case where F is not
necessarily strictly convex, implying that phase transitions of first order can occur.

3.1. Imperfect systems without phase transitions of the first order

Here, we consider systems with a Hamiltonian as in (14), where the function F is
twice continuously differentiable and strictly convex. In this case, the existence of the
thermodynamic limit for the pressure for both the boson and fermion gas is guaranteed
by:

(i) translation invariance;

(ii) uniform boundedness of the grand canonical partition function Z,;

(iii) Zx, v Z,=Z,Z, for each A; and A; such that Ay n Ay = & (for more details
see Ruelle 1969). This follows from the inequalities

n1+n2
Vi+ V2

ni

(Vi+ Vz)F( o

) s WV F ( > + VL, F (E> (convexity of F)

\€

and
QAlqu(ns B) = i=0 OA1 (ma B)QAz (n - m, B)

where Q,(n, B) is the canonical partition function for the free system.

Proposition 3.1. For the given Hamiltonian (14), gg is defined implicitly as a function
of B and u, by
(i) if u <F'(p.), then
d’k 1 i
2m)” explBGk*—u +F'(5p(B, p))]-1°

po(B, )= | (20)
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(ii) if u =F'(p.), then
F'(ps(B, ) = . (21)

Proof. First remark that, as F is strictly convex, the function x- yg(x)
+ F(x)+(uwo—u)x is also strictly convex and therefore reaches its minimum at the
point where the derivative vanishes.

(i} Suppose first that u <F'(p.). In this case, one can prove that gp(B, u)<p..
Indeed, for any xo = p., F'(x0) = F'(p.) as F is convex. So, F'(x¢)—u =F'(pc)—u >0
and therefore yp(x)+F(x)+ (uo—u)x cannot take its minimum value at xo. Hence,
the minimum lies in the region x < p. and gg(B, &) is the point where

F)+ub0-p=0,  or  wh(Ga(B,u)=~F sl w)+u @2)
Combining (22) and (16), we find

_ Ak 1 ,

8.7 | G BT P T e <F e

(ii) Suppose that u=F'(p.). Then, by an analogous argument we find that
pe(B, n)=F'(p;). Therefore, gu(B,u) is the point x where F'(x)—u=0 or
F'(ps(B, u)) = for u=F'(p.).

Proposition 3.2. For the imperfect fermion system, gr is defined implicitly as a function
of B and u by

d’k 1
Q)" exp[BGk*—u +F'(pe(B, u))]+1

Pr(B, n) = J YueR (23)

Proof. The proof is completely analogous to the proof of proposition 3.1.

Remark. In the case of strictly convex F, the function u > g (B, u) is everywhere
continuous, implying that gg (8, u) is the density for all u e R.

Again we want to find up as a function of ur by equating the densities. This follows
from:

Lemma 3.3. With g and gr as defined in propositions 3.1 and 3.2, one has: if g1(u)
and g»(w) are defined by

d’k  exp[B(k’—u)]
2m)” {exp[BGKk* - u)]+1}”

aiw =8

_ o[ @k explBGK®—p)]
then
. e, .\ _ g:(u —F'(5x(B, ) .
® du B w) 1+ F"(ge(B, u))g:1(n — F'(r(B, 1))’
(ii) if pu(B, 1) <p.:
%(B u) = g2(u —F'(pn(B, 1)) )
du 1+F"(5s(B, u))g2(un —F'(ps(B, 1))’
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if pa(B, u)>p.:
dés

1
F'(5s(B, 1))
Proof. We only prove (ii).
(a) pr(B, u)<p.. In this case
d’k 1
2m)” exp[BGk*—p +F'(pa(B, u)]-1

Pe(B, 1) =J

and

d’k  exp[BGk*—u +F'(Ba(B, u))] )

d o op
327260~ 8( | G2 Ganlp @ s F o, a1 7

d
x(1-Fioa(B, ) 3 5ol )
So,

d
dn pa(B, w)(1+F"(pp(B, 1))g2(u — F'(pu(B, 1)) = g2( — F'(Ps(B, u)))

from which the result follows.
(b) os(B, u)>p.. Then, F'(pp(B, n))=un and

,dﬁB(B’ I-L) =

< F(Ga(6, 1) = F(Gs(6, 1) 1.
"

The existence of a function f relating the chemical potentials up=f(ug) is now
immediate from the implicit function theorem and lemma 3.3.

Theorem 3.4. For the Hamiltonian (14), and for equal densities
P88, f(ur)) <pe(B, ur) VureR, VB >0. (24)

Proof. We distinguish the cases (i) ur€ R such that f(ur) <F'(p.), (ii) ur€ R such that
f(ur)>F'(p), (iii) ure R such that f(ur) = F'(p.).

(i) First, consider ur such that f(ug) <F'(p.). Then pu(B, f(ur)) = (B, ur) =p <
p.. Asin § 2, it is sufficient to prove that

df(ur)/dur<1.

Let ur and up be the chemical potentials of the ideal systems such that
pe(B, ur)=pu(B, ub)=p

where ph are as in (10) and (11). Comparing (11) and (23), one finds
ur = ur—F'(5r(8, 1e)).

Comparing (10) and (20), one finds
s = f(ue) = F'(5s(B, f(ur))).
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So,
g:1(ur—F'(5r(B, ur) = g1(uF) <pr (B, ur) =p, (25)
g2(f(ur)~F'(pa(B, f(ur) = g2(n ) >pn (B, un) =p. (26)

Finally, remark that the map x €]—A"", o0o[» x/(1+Ax) is increasing for all A eR.
Then, it follows from lemma 3.3 and from (25) and (26) that

df (ur) _ _dpe(B, w)/dic e
dur  dps(B, u)/dusen
for all ur such that f(ur) <F'(p.).
(ii) Consider any ur such that f(ug) > F'(p.). Then
ﬁF(B’ “F) = 53(3? f(l"F)) > Pe.
From lemma 3.3,
dds I S
du BT FGolB, Flar)
g1(pr—F'(0r(B, u¥))) _dpr

z 1+ F"(5e(B, ur)g1(ur—F'(Gr(B, ur)) E B, ) ur 28)

@7

Again,
df(ur)/dur<1
for all ur such that f(ur) > F'(pc).
(iii) Special care should be taken if f(ur) = F'(p.), since in this case
Pe(B, ur) = pu(B, f(ur)) = pc.
However, this can be treated as the ideal gas; see proof of theorem 2.2. One finds

o8B, f(ur)) <Pr(B, ur) for ur such that f(ug) = F'(p.). (29)
The theorem follows from (27), (28) and (29).

3.2. Imperfect systems with phase transitions of the first order

Let us now consider imperfect systems, with a Hamiltonian given by (14), where the
function F:xeR" > F(x) is twice continuously differentiable, but not necessarily
strictly convex. Then phase transitions of the first order can occur (see Davies 1972).
Again, only Dirichlet boundary conditions are considered. In the first lemma, we
prove the existence of the thermodynamic limit for the pressure.

Lemma 3.5. If there exists a constant ¢ € R, such that Vx e R*, F(x)=cx then, with
the notations above,
I

Pae(B, 1) = lim pae(As, B, ) = pom(B ) du

Proof. 1t is sufficient to prove that

I
lim pae (A B )= | pom(B, 1) du
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for any sequence {A,}..n Of cubes A, with increasing side. We know, as Davies (1972)
proved, that

lim ppE(An, B, 1) =@ (B, 1)

n—-
for all u € R for which the function u € R-> gp)(8, ) is continuous and that there
are only a countable number of discontinuity points for this function. Therefore

lim sup peE)(An B, 1) = lim inf paE(An, B, ) =g (B, n) AE.  (30)
Now, denote by phw (A, B, u) the pressure for the ideal boson (fermion) gas and
take wo€ R such that uo—c <0. For this uo, we prove that

Ho

ll_l.'l;lo pB(F)(Am B, I~L0) = J ﬁB(F)(Bs I-L) d#'

As there exists a constant ¢ such that F(x) = cx for all x € R, it follows easily that

PaE(An B, o) <PB® (An B, o—C).
Moreover, since the sequence {p5sm (An B, 1)} nen is convergent, it is bounded or
AR :phe(Am B, mo—c)<A, VneN.

We prove consecutively that

g Ko
[ ot w) du < im int [ pae(An 8, ) ds

”

<lim sup J' pE A B, 1) du
n—-o 0

SJ. OP'Ba:)(B, ©) du. (31)

Define g,(u)=infnenpaE (Antm By 1) Vo <po. Then g.(w)<pemAnim B 1),
VmeN, Vu <uo, and

®o ™
[ awr dus] " porAnom B, u) du

=ppE(An+m By o) S A, VmeN (32)
implying
Ko
sup [ gu(w) du <4
Furthermore,
Ho Ho
sup [ ga(u) dus = [ sup (1) (33)

as gn, = gn, if n2>n, (see Dieudonné 1969). From (32), it follows immediately that

Ko Ho
I gnlp)du < nllfgv I PeE(Anem B, 1) dut.

—0C
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Taking the supremum over n and using (33) and (30), we find

Ho

(B, 1) du

[ tim inf pace (A 8, ) = |

I
<liminf [ oA B, 0) du <A
This proves the first inequality of (31). The second inequality being trivial, the last
inequality follows from an analogous argument as the first. This proves that

H

lim paw(An B, 0= | ae (8, ) di

The existence of the thermodynamic limit for the pressure for all u € R follows from
a direct application of the dominated convergence theorem on

"
pe®(An, B, )~ Pa@®(An, B, to) = J- peE(An B, 1) du.

o

An interesting function F is F(x)= —ax*>+bx*(a, b>0). For this function, one
can indeed find a constant ¢ such that F(x)=cx for all x e R", e.g.

c=—(a®/2b)"".

Let us denote the functions ygE)(x)+F(x)+(uo—u)x by Apglx, ). Remember
that ppr(B, 1) is the lowest value of x for which the function Ag(x, ) attains its
minimum. The function wu - gpE(B, u) is easily seen to be increasing and is
everywhere continuous except at those points u for which the function attains its
minimum value at more than one point. In the latter case, ga (8, u) shows a jump
from the lowest value of x to the highest value of x for which the minimum is attained.
We know that gpr)(B, 1) gives the density if u is a point of continuity. We still have
to say what happens at a discontinuity point. Let 4 be a discontinuity point such that
Pe@(B, 1) jumps from p; to p; at u. Define ur by pa@ (AL, B, ur)=p for all Le R,
where p is a given density in the interval [pi, p»]. It follows that lim;.cour = u.
Furthermore, in the thermodynamic limit, the system splits up in two phases, one
with density p, and one with density p,, and this in such a proportion that the mean
density is p (Davies 1972).

In the next theorem, we frequently use the fact that x eR+—>/.L}.-(x)—p,}3(x) is
increasing, which can easily be proved.

Theorem 3.6. Consider boson and fermion systems with local Hamiltonians given by

Haw= T enma*(f0ali) —uNa + VAOF(505)  34)

where F is a twice continuously differentiable, not strictly convex function with F(0) =0
and lim,..F'(x) =+00. Suppose that a phase transition of the first order occurs for
the fermion gas, i.e. 3u + € R such that

lim Ge(B, )= pr, lim Ge(B, 1) = pF with p¢ <pt.

utup wlup
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Then 3up € R such that
lim (B, 1) =ps <pi <pr <pp = lim Fa(B, u).
wtud wlud

Proof. Since there is a phase transition of first order at u = u¢ for the fermion gas,
it follows that

Vx eR": Ap(x, ut) = Ap(ob, ut) = Ar(p?, ut) =B (35)
and

a 1 a 1

— Ag(x, =— Ax(x, =0

ax rlx I-LF) arr AF(X #F) 2
or

pE(ER)+F'(op)— e =pis)+F'(p3)—pi =0. (36)

We have to prove that for all u € R, Ag(x, ) never attains its minimum value in the
interval [p, pz ], which means that for all u € R and for all x € [pr, p2], Fu(B, 1) # x,
or, that there exists a u}; such that

lim pa(B, 1) =ps <pF and lim Fs(B, w)=p5 > pF.

wlus ulug

Letus =ur —(ur(pr)—unlpr)) and for later use, ud=pur—(ur(pr)—usor)).
Then

wE<ud and pe(B, u3) <pu(B, ud).

The strategy of the proof consists in first proving that there are two cases to consider:
Pt <pp(B, u3) or pu(B, ui)<pr. Then, for each of these possibilities, we prove that
for all 4 € R and for all p € [py, p3] we have p # 55(B, 1).

Now, we proceed to the proof of the first statement. We look for the minimum
of Ag(x, u3)=B(x).

B'(pr)=pn(pr)+F'(pr) — ui + (uk(0F) — b (pF))
=(ur(pE)— b)) — (wE(PR ~ uk(pr)) >0

where we used (36) to obtain the second equality. Thus B is strictly increasing at pg,
which implies that there exists an x; < p,l.- with

B(x1)<B(pr). (37)
Furthermore, define
C(x)=Ap(x, ur) = B(x).
Then
C'(x) = (ur(x)~us(x)) = (ur(p7) — 1 (oF))
and C'(x) =<0 for all x <p}. Therefore
Ar(pr, ur)—B(pt) = Ar(p, ur)— B(p) for all p € [pF, p7]
or, using (35),
B(p)=B(pr)+Ar(p, ur) ~ Axlor, ur) =B(pr) for all p € [pr, o7 ]. (38)
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Combining (37) and (38), we find
3x, < pr such that for all p €[pF, p2]: B(x1)<B{pt)<B(p). (39)

This means that the function B(x) = Ag(x, u3) does not attain its minimum value at
any p €[pr, p7). S0, Fn(B, ud)>pr or fp(B, us) <pr.

Next, we prove the second statement.

(1) If ps(B, p§)>p§, we distinguish between (a) u By,%, (b) u<ud.

(@) w=pub: as pa(B, u) is an increasing function of u, one has

pe(B, 1) =pu(B, ud)>p#, Yu>ub

(b) u<u3: using (39)

As(xy, w)=An(xry, pd)+ wd —w)xi=B)+(ud —p)x1 <Bpr)+(ub —u)pr
= Ag(or, n)<B(p)+(us —u)p = Aslp, 1) for all p €[pr, p2]. (40)

This means that for all u <u3:Ag(x1, u)<Ag(p, u), Vo €[pt, p2]. Combining the
results of (a) and (b), we get that for all x € R and p € [py, p%], 5u(B, ) # p holds.

(2) If ps(B, uk) <ps, we will again distinguish two cases. Therefore, we look for
the minimum of Ag(x, u3)=D(x). Then

D'(p#) = (ur(or) — b (or)) — (ur (oF) — B (0F)) <O
which implies that

3y, > p? such that D(y,)<D(p?). (41)
Also, let E(x) = Ag(x, ut)—D(x). Then

E'(x)=(ur(x)—pn(x) — (ur(or) — 1 (pF))

and E'(x)>0 for all x> pr.
Hence, analogously as for Ag(x, w3), one finds

D(p)=D(p%) for all p € [pr, p£]. (42)
Combining (41) and (42) yields
3y, > p? such that for all p €[ps, pE1: D(p) = D(p2)> D(yy). (43)

This means that either 5a(8, u3) <pr or 5a(B, u3)>pt. If fp(B, ud)<pr we again
distinguish (a) u <u3, (b) u > ui.
(a) us uy 1pu(B, 1) is an increasing function of w ; therefore,
ﬁB(B! “)sﬁB(Ba M%)<p}17 for allp,sy,%
(b) u >y,133 :using (43), one finds as in (1b)

AB(P, /J') ?AB(P%’ ”’) >AB(y1’ /J')) for all pE [PII-‘, Plz-‘] and all “ > I‘L%-
(a) and (b) again yield the result.
The last case we have to consider is gg(8, u3) <pr and ps(8, u3)>p% Then

Vu <uh:fs(B, u)<pr (44)
Vu>ud a8, u)>pk. (45)

We still have to prove that for all u € Ju, u2[ and for all p € [pf, p2], 5a(B, 1) # p.
Take any w € Ju3, n2[ and choose po€ R such that i = ut — (ut(po) — wa (po)). It can
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easily be seen that pk <po<ps. Let G(x)=Ag(x, u) and H(x) = Ag(x, ut)— G(x).
Then,

G'(p#) = (ur(po) — b (po)) ~ (mE(pE) = B (pF)) >0,

G'(p%) = (k¥ (o) — B (po) — (ur (pF) — uB (pF)) <O,
implying that 3x,, y,€ R* such that x, < p; <p# <y, and

G(x2) < G(pt), (46)
G(y2) < G(p$). (47)

Also H'(x)=(uk(x)—pb(x))— (1E(0o) — w5 (po)) and H'(x)<0, Yx<po, H'(x)=0,
Vx = po. So, as above, we find

3x, < pr such that for all p € [p, pol: G(x2) < G(pr) < G(p), (48)
3y, >p2 such that for all p € [po, p2): G(p) = Gp#)> G(y2). (49)

Combining (44), (45), (48) and (49), we obtain the result.
As a byproduct, we obtain immediately from theorem 3.6 the following result.

Corollary 3.7. Let (T.)s be the temperature above which there is no phase transition
of the first order. Then (T¢)s = (Te)r.

Proof. For any T <(T.)r such that there is a phase transition for the fermion gas,
there is also a phase transition for the boson gas. Therefore (Tc)r<(T.)p.

Proposition 3.8. With the Hamiltonian (34), one has that (i) pe) (8, &) is an increasing
and convex function of x4 and therefore continuous. (ii) psw)(B, 1) is everywhere
differentiable with derivative dper)(B, i)/du =FsE (B8, u) except at the points of
discontinuity of the map u - gpE (B, u).

Proof. (i) follows from the convexity of peE)(An B, 1) and lim,.« paE(An, B, 0)=
per (B, u) (lemma 3.5). (ii) follows directly from the lemma of Griffiths (Hepp and
Lieb 1973), and the remark that lim; .. paEf(AL, B, ) = fpE (B, 1) for all u, points
of continuity.

Before, we always had a one-to-one correspondence between u and the fermion
density. However, when phase transitions of the first order occur, this is not the case
anymore. Therefore, it is more appropriate to define pg as a function of 8 and p
instead of B and u. If we want to denote the pressure as a function of u, we use
further on the notation fp)(B, 1 ).

Let Inr be the countable index set labelling the set of discontinuity points of the
map u - fee(B, ). We denote with u g, i € In), the discontinuity points. At these
points

lim pgam(B u)= plB‘(F), lim par (B, u)= Plzai(!-‘)-

utunm [T )

As already mentioned, if p € [psF), Pocr) ] and ug;‘F) is defined by ppE (A, B, ug;‘m) =p,
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then
lim 5% = Lo
Therefore, from proposition 3.8, it follows that for all i € [y and all

pelobe, phm ] Pe®(B: 0) =Pam (B, LbE)-

Finally, remark that if pgE) (B, 1) is differentiable with respect to p at a point ug
and p = pg(r (B, wo), then

dpF(B’ P) = P
dp o Apem(B, w)/du .,

(50)

Theorem 3.9. With the Hamiltonian (34) and with the conventions for the pressure
one has

pe(B, p)<pe(B, p), VB eRs, Vp>0.

Proof. (i) Suppose there are no phase transitions for the boson gas (or T >{(T.)s where
(T.)p is defined as in corollary 3.7).

Then the proof goes along the same lines as in theorem 3.4. (ii) T < (70)s: suppose
there are phase transmons for u = uh (i € In), where ps(B, 1) jumps from py to p3

If ps <p <p%, we have:

(a) if there is a phase transition for the fermlon gas, i.e. pp(B, u) jumps from pr
to pz at ur, then 3j € Iy such that py <pr <pF <pB (theorem 3.6);

(b) psm(B, ) is constant for all p €[pyr, piw ). Therefore, pa(B, p)<pe(B, p)
forallpe [PB, pa1if pa(B, p8) <Pe(B, pB).
If p£[ps, p] for all iely and p #p. where p. is the critical density for boson
condensation, it can be proved as in theorem 3.4 that

dps(B, 1) > dpr(B, i)
du  lpwp du e

where the function f is as above.

Again, for p = p. special care should be taken and we have to use an argument
similar to the one in theorem 2.2. Using this, we can again apply our argument as in
theorem 2.1 to obtain the result. The picture of pg as a function of the density p
in the case of phase transitions looks as in figure 1. If F(x)=—ax’+bx* it can be
seen that there is maximally one platform where pp) is constant as a function of p.
In this case the phase diagram resembles the phase diagram of water (if we don’t
take into account the solid phase).

We treated here imperfect models with a Hamiltonian as in (34), where F is twice
continuously differentiable everywhere. The results do not change if F is twice
continuously differentiable almost everywhere with respect to the Lebesgue measure.
In this case, phase transitions of the second order may also occur. The proof of
theorem 3.9 goes along the same lines, only some care should be taken for those
points p where a phase transition of second order occurs.
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Figure 1. The pressure as a function of the density for general mean field interactions.
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