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J. Phys. A: Math. Gen. 15 (1982) 2483-2498. Printed in Great Britain 

On the pressure of boson and fermion systems 

Ph de Smedtt and G Stragiert 
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

Received 13 January 1982 

Abstract. We prove that the pressure of a system of fermion particles, interacting through 
a generalised mean field potential, is always greater than the pressure of an identical 
system of boson particles at the same density and temperature, even when phase transitions 
occur. 

1. Introduction 

It is generally assumed that, except for some systems where the interaction between 
the particles is too strong, the pressure of a gas consisting of boson particles will 
always be smaller than the pressure of an identical gas of fermion particles, at the 
same density and temperature. This phenomenon should be due to the different 
statistics. Indeed, the statistics cause the bosons (fermions) to suffer a statistical 
attraction (repulsion). For free systems, this was indeed proved in the near classical 
region (high temperature, low density) (Uhlenbeck and Gropper 1932, Landau and 
Lifshitz 1958). Liboff (1981) was able to generalise these inequalities to all thermo- 
dynamic states of finite temperature and thus for free systems. 

Here we extend these results to systems with interactions of the mean field type. 
Our method of proof shows clearly where the statistics come into the argument. 
Essentially, the method is based on comparing the density fluctuations for the boson 
and fermion systems. As our method does not depend in an essential way on explicit 
calculations, there might be some hope that an analogous approach could be used for 
systems with stable or superstable interactions. 

In D 2, we deal with free systems. The pressure inequalities are derived both for 
the finite volume case and for the thermodynamic limit. The thermodynamic limit 
case has already been treated by Liboff, but the proof presented in this paper is 
essentially different. 

In 0 3, we prove the theorem for systems with a generalised mean field interaction. 
We treat systems without phase transitions of the first order, as well as systems in 
which phase transitions of the first order can occur. As a byproduct, we show that in 
the latter case the statistics also have an influence on the occurrence of the phase 
transition, namely that the critical temperature above which no phase transition of 
first order occurs is higher for the boson gas than for the fermion gas. 

The ingredients for our systems are the following. Let A be an open bounded 
region of R” with v o l u m M A ) :  Y is the dimension of the svstem. We denote bv 
Fi ( F i )  the usual boson (fermion) Fock space, constructed on L2(A,  dx). The free 
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Hamiltonian of the boson and the fermion system is given by 

where {ft}nso are the eigenfunctions and &X(n) the corresponding eigenvalues of the 
Laplacian -kA2 on L2(A,  dx) with the boundary conditions at,b/an = U$; a*( fn) ,  a ( fn )  
are the usual Fock creation and annihilation operators satisfying the canonical commu- 
tation relations in the boson case, and the canonical anticommutation relations in the 
fermion case. NA is the number operator and is equal to Z a * ( f k ) a ( f : ) .  Finally, p 
is the chemical potential and p < (0) for the boson case, while p E R for the fermion 
case. For the finite volume treatment, more general spectra EA(n) can be considered, 
but for the thermodynamic limit we restrict for simplicity to the Laplacian. As the 
thermodynamic limit for free systems is independent of U (Landau and Wilde 1979), 
we drop the index U for notational convenience. 

Finally we recall some definitions (see Ruelle 1969). The finite volume pressure 
in the grand canonical ensemble is given by 

PB(F)(A, P, = (l/Pv(A)) log ZB(F)(A, P, (2) 

ZB(F)(A, P ,  ~ ) = T ~ F ; ( F ; , ~ x P  ( -PHA+) .  (3) 

where the ZB(F)(A, P, p )  is the grand canonical partition function, defined by 

The density is given by 

or 

where U&),, is the grand canonical Gibbs state at the chemical potential p and 
temperature 1/P. 

PB(F)(A, P, CL) = u & = ) , ~ ( N A /  v(A)) 

2. Pressure inequalities for free systems 

2.1. The finite system 

From (2), ( 3 )  and (4) it follows trivially that 

Furthermore, using (6) and the correlation inequalities (see Fannes and Verbeure 
1977), we find 

where N ( f k ) = a * ( f k ) a ( f k ) ,  p ~ ~ I W a n d p ~ < & ~ ( 0 ) .  
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Let 

GA.,8(@B, FF) =PB(A, P, pB)-PF(A, P, pF)  V p F  E R, V p B  < &L(O). 
We restrict our attention to the pairs ( p B ,  pF) for which G A , B ( p B ,  pF) = 0. These pairs 
are the chemical potentials of systems at the same density. From (7) it follows that 

~ G A , ~ ( c L B ,  c.LF)/aPB = d P d k  0, cLB)/dPB # 0, V p B  < - 
Therefore, by the implicit function theorem, there exists an analytic function f such 
that p B  = f ( p F ) .  We have 

Theorem 2.1. For the Hamiltonian (l), and with the notations above 

PB(A, P, f (PF)) <pF(A, P, pF)  V p F E  R, V P  >o. 
Proof. First remark that 

Therefore A(/LF) >O,  V ~ F E  R. 

2.2. The thermodynamic limit 

Denote by AL the centred cube with side L. Define for all P > 0, for all p < 0 in the 
boson case and for all p E R in the fermion case, 

PB(F)(P,  CL) = lim PB(F)(AL, P, CL), PB(F)(P, p )  = lim PB(F)(AL, P, CL). 

These limits exist and are independent of the boundary conditions (Landau and Wilde 
1979, Ruelle 1969). It is well known that for all p < 0, pB(P,  p )  < p c ,  where pc is the 
critical density given by 

L- w L-m 

for U L 3, 
d"k 1 

P C =  J m e x p  ($Pk2)-1 
(9) 

=+a for U = 1 ,2 .  



2486 Ph de Smedt and G Stragier 

Using Griffiths' lemma (see e.g. Hepp and Lieb 1973), one finds 

~ P B ( F ) / ~ C L  (PI CL) = PB(F)(P, P ) .  

Furthermore, using the explicit expressions for PB(F)(P, p )  given by 

(see e.g. Bratelli and Robinson 1981), one can prove, completely analogous to the 
finite volume case, that 

(i) p B  can be written as a function of p F ,  or p B  = f ( p ~ ) ,  V ~ F  such that p & ? ,  p ~ )  < pc 
or V P F : ~ ( C L F ) < ~ ;  

(ii) df (pF)/dpF< 1 implying that 

PB(P ,  f (pF))  <PF(P, F F ) ,  VFF : ~ ( P F )  < 0. (12) 

Next consider the case where the density of the systems is greater than pc. Let p (A,) 
be defined by p = PB(AL, 0, p ( A L ) ) ;  then it is well known that limL+m p ( A L )  = 0, for 
p a p e  and 

lim PB(AL, P, PLAL)) = P B ( P ,  0) lim PB(P ,  PB) 
L-00 F B t O  

(see e.g. Ziff et a1 1977). 
Define f-'(O) as 

Now, since ,uF+PB(P, f ( p ~ ) )  is constant on p~ af- ' (O),  while /LF+PF(P, pF) is increas- 
ingfor all PF, it is sufficient to prove that PB(& 0) <PF(P, f-'(O)) to obtain the inequality 

PB(P, f(@F)) <PF(P, F F )  

PB@, 0) sPF(P, f-'(O))* (13) 

for all p F a f - l ( ~ ) .  

From (1 2) 

To prove that (13) is in fact a strict inequality, we look for a strictly positive lower 
bound for PF@, f-'(O)) -pB(P, 0). The argument here is a very simple one and is given 
only for completeness. Let ~ ( , u F )  < 0 and take p ~ >  - A ;  then 

AS f ( p ~ )  < p~ for all p F ,  we thus have 
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Moreover, as in the finite volume case, one can also prove that 

V p F  E R, VP > 0. 
1 1 
P P P B ( P ,  f ( p F ) )  < - P B ( P ,  f (kF))  =-PF(P, p F )  <PF(P, P F )  

Recently theorem 2.2. was proved in Liboff (1981) by an explicit calculation of the 
pressures. Our proof shows moreover that the result is a direct consequence of the 
statistics. 

3. Pressure inequalities for imperfect systems 

We only consider systems in the thermodynamic limit. The Hamiltonian for the finite 
fermion and boson system is given by 

The EA,(n) are defined in the introduction (for simplicity, only Dirichlet boundary 
conditions are considered). F is a continuously differentiable function satisfying 
F(0)  = 0 and limx+m F'(x)  = 00. This last condition guarantees that exp(-@HA,,,) is 
trace class for all values of p E R and all AL. 

We are interested in the density as a function of p and p,  First consider the boson 
gas. Let po be any strictly negative number and let the map yB be defined on Rc by 

where p k ( x )  is defined by 

(pc  is the critical density for boson condensation defined by (9)). Furthermore, define 
p B ( P ,  p )  as the smallest values of x for which the function ~ B ( x )  + F ( x )  + (po- p)x 
takes its minimal value. 

Then, as Davies (1972) proved, 

lim PB(AL, P, CL) = p B ( P ,  p 1 
L-CC 

for all points p of continuity of the map p -* p B ( P ,  p ) ,  and for all these points, p B ( P ,  p )  
is the unique density of the system at the chemical potential ,U. 

The technique of Davies can also be used for imperfect fermion systems, to obtain 
an expression for the density in terms of P and p. For any , U ~ E  R, let y F ( x )  be 
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given by 

where pL(x) is defined by 

x = j -  d”k 1 
( 2 ~ ) ”  exp[p($kz-p~(x))]+ 1’ 

Again, if &@, p )  is the smallest value of x for which the function ~ F ( x )  + F ( x ) +  
( p ~  - p)x reaches its minimal value, limL-,m pF(AL, 6, p )  = iiF(P, p )  for all points p 
where the map p + iiF(P, p )  is continuous. 

Remark that yB(x) and p B ( x )  are written out in a slightly different way than in 
Davies (1972), but it can easily be seen that they are equivalent. Also, although 
Davies derives his result only in three dimensions, his technique can be used to derive 
results in arbitrary dimensions. 

In § 3.1, we treat the case where F is a twice continuously differentiable, strictly 
convex function. In this case no phase transition of first order (i.e. no discontinuity 
of P B ~ F ) ( / ~ ,  p )  as a function of p )  occurs. In § 3.2, we treat the case where F is not 
necessarily strictly convex, implying that phase transitions of first order can occur. 

3.1. Imperfect systems without phase transitions of the first order 

Here, we consider systems with a Hamiltonian as in (14), where the function F is 
twice continuously differentiable and strictly convex. In this case, the existence of the 
thermodynamic limit for the pressure for both the boson and fermion gas is guaranteed 
by: 

(i) translation invariance; 
(ii) uniform boundedness of the grand canonical partition function ZA; 
(iii) ZA, U ZA2 sZA,ZA, for each A1 and A2 such that A, n A2 = 0 (for more details 

see Ruelle 1969). This follows from the inequalities 

( v1 + v’)F( -) s V’F( $) + V ~ F (  s) (convexity of F) 
V l +  v2 vz 

and 
n 

Q A ~ ~ A ~ ( ~ ,  P ) a  1 QA, (m,  P ) Q A ~ ( ~  - m y  P )  
m=O 

where QA(n, p )  is the canonical partition function for the free system. 

Proposition 3.1. For the given Hamiltonian (14), pB is defined implicitly as a function 
of p and p, by 

(i) if p < F’(p,) ,  then 
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Proof, First remark that, as F is strictly convex, the function ~ + Y B ( x )  
+ F ( x ) + ( p 0 - p ) x  is also strictly convex and therefore reaches its minimum at the 
point where the derivative vanishes. 

(i) Suppose first that p <F’(p,) .  In this case, one can prove that pB@, p ) < p , .  
Indeed, for any x o s p , ,  F’(xo) aF’(pc) as F is convex. So, Ff(xo)-p aFf (p , ) -p  > O  
and therefore yB(x) + F ( x ) +  (po-p)x  cannot take its minimum value at xo. Hence, 
the minimum lies in the region x < pc and pB(P, p )  is the point where 

F’(x )+pL ( x ) - p  = 0, or pL(pB(P, p))=-F’(pB(P, CL))+@* (22) 
Combining (22) and (16), we find 

(ii) Suppose that p aF’(p , ) .  Then, by an analogous argument we find that 
PB@, p)aF’(p, ) .  Therefore, p B ( P ,  p )  is the point x where F ’ ( x ) - p  = O  or 
F’(pB(P, p ) )  = p  for (U a F f ( p c ) .  

Proposition 3.2. For the imperfect fermion system, pF is defined implicitly as a function 
of p and p by 

Proof. The proof is completely analogous to the proof of proposition 3.1. 

Remark. In the case of strictly convex F, the function p +pB(F)(P, p )  is everywhere 
continuous, implying that ~ B ( F )  (p, p )  is the density for all p E R. 

Again we want to find pB as a function of p~ by equating the densities. This follows 
from: 

Lemma 3.3. With pB and PF as defined in propositions 3.1 and 3.2, one has: if gl(,u) 
and g2(p) are defined by 

d“k exp[P($k’-p)] 
{exp[P ($k2 - p )I + 

then 
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The existence of a function f relating the chemical potentials pB=f(pF) is now 
immediate from the implicit function theorem and lemma 3.3. 

Theorem 3.4. For the Hamiltonian (14), and for equal densities 

PB(P ,  f b F ) )  <PF(P, p F )  V p F  E R, VP > 0. (24) 

Proof. We distinguish the cases (i)  FE 54 such that f ( p F )  <F’(p,), (ii)  FE R such that 
f ( p ~ )  > F’(pc), (iii) p~ E R such that f ( p F )  = F’(p,). 

(i) First, consider p~ such that f ( p F )  <F‘(p,) .  Then PB(P ,  f ( p F ) )  = &(P, p F )  = p < 
pc. As in § 2, it is sufficient to prove that 

d f  ( p F ) / d l F <  1 

Let pk and p: be the chemical potentials of the ideal systems such that 
I 

P k ( P ,  P F )  = P’e (P, P’e 1 = p 

CL: =cLF-F’(PF(P, PF)). 

where p & ~ )  are as in (10) and (11). Comparing (11) and (23), one finds 

Comparing (10) and (20), one finds 

p; = f ( F F ) - F ’ ( P B ( P ,  f (pF)))* 
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SO, 

gl(kF-F’@F(P, pF)))=gl(pb)<pb(P, (25) 

gz(f(pF)-F’@B(P,fGLF))))  =gZ(pL)>pL(P, ELL) (26) 
Finally, remark that the map x EI-A-’,  m[+x/(l+Ax) is increasing for all A ER. 
Then, it follows from lemma 3.3 and from (25) and (26) that 

for all p F  such that f (pF) < F’(p,). 
(ii) Consider any p~ such that f(pF)  >F’(p,). Then 

PF@, pF) = PB@, f bF))  > p c -  

From lemma 3.3, 

The theorem follows from (27), (28) and (29). 

3.2. Imperfect systems with phase transitions of the first order 

Let us now consider imperfect systems, with a Hamiltonian given by (14), where the 
function F : x E R’+F(x) is twice continuously differentiable, but not necessarily 
strictly convex. Then phase transitions of the first order can occur (see Davies 1972). 
Again, only Dirichlet boundary conditions are considered. In the first lemma, we 
prove the existence of the thermodynamic limit for the pressure. 

Lemmu 3.5. If there exists a constant c E R, such that Vx E R+, F(x)  a cx then, with 
the notations above, 

PB(F)(P, P )  E lim P B ( F ) ( ~ L ,  P, p )  = l w  PB(F)(P, p )  dp. 
L-bW -m 

Proof. It is sufficient to prove that 

lim PB(F)(L, P, C L )  = I PB(F)@, p )  d p  
n-.m -m 
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for any sequence {An}nEN of cubes An with increasing side. We know, as Davies (1972) 
proved, that 

lim PB(F)(Ant P, P )  =)?B(F)(P, E L )  
n-m 

for all p E R for which the function p E R + & F ) ( P ,  p )  is continuous and that there 
are only a countable number of discontinuity points for this function. Therefore 

lim SUP PB(F)(An,  P,  CL) = lim inf PB(F)(An, P,  CL) = L%(F)(P, w 1 AE. (30) 

P, p )  the pressure for the ideal boson (fermion) gas and 

n-m n+m 

Now, denote by 
take po E R such that po - c < 0. For this po, we prove that 

f i0  

n+m -m 
lim PB(F)(An,  P, Po) = J PB(F)(P, c L )  dp.  

As there exists a constant c such that F ( x )  3 cx for all x E R', it follows easily that 

PB(F)(An,  P, k0) P&F) ( A n ,  P, PO - c ) .  

Moreover, since the sequence { P & ~ ) ( A , , ,  P, w ) } , ~ ~  is convergent, it is bounded or 

3A E R' : p&F) (An, P, po - c )  s A, V n  E N. 

We prove consecutively that 

r f i o  

implying 

Furthermore, 
f i0  

sup j f i o  g n b )  d p  = 1 sup g n b )  d p  (33) 
n c N  -m -m n e N  

nz>nl (see DieudonnC 1969). From (32), it follows immediately that 
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Taking the supremum over n and using (33 )  and (30), we find 

This proves the first inequality of (31). The second inequality being trivial, the last 
inequality follows from an analogous argument as the first. This proves that 

WO 

lim PB(F)(& P, PO) = I PB(F) (P, CL)  dp. 
-W n-m 

The existence of the thermodynamic limit for the pressure for all p E R follows from 
a direct application of the dominated convergence theorem on 

PB(F)(L, P, ~ ) - P B ( F ) ( L  P, Po) = Ifi PB(F)(L, P, p )  dp. 
(r0 

An interesting function F is F ( x )  = -ax2 + bx4 (a,  b > 0) .  For this function, one 
can indeed find a constant c such that F(x)  3 cx for all x E R', e.g. 

c = - ( ~ ~ / 2 b ) " ~ .  

Let us denote the functions ~ B ( F ) ( x ) + F ( x )  + (po-p)x by A B ( + ,  p ) .  Remember 
that &(~)(/3,  p )  is the lowest value of x for which the function AB(F)(x ,  p )  attains its 
minimum. The function p +PB(F)(P, p )  is easily seen to be increasing and is 
everywhere continuous except at those points p for which the function attains its 
minimum value at more than one point. In the latter case, p B ( F ) ( P ,  p )  shows a jump 
from the lowest value of x to the highest value of x for which the minimum is attained. 
We know that PB(F)(P, p )  gives the density if p is a point of continuity. We still have 
to say what happens at a discontinuity point. Let p be a discontinuity point such that 
PB(F)(P, P )  jumps from PI to p2 at CL. Define CLL by P B ( F ) ( ~ L ,  P, P L )  = p for all L E R', 
where p is a given density in the interval [ p l , p 2 ] .  It follows that limL.+mpL=p. 
Furthermore, in the thermodynamic limit, the system splits up in two phases, one 
with density p1 and one with density p2, and this in such a proportion that the mean 
density is p (Davies 1972). 

In the next theorem, we frequently use the fact that x E R'+ p&(x) - p; (x) is 
increasing, which can easily be proved. 

Theorem 3.6. Consider boson and fermion systems with local Hamiltonians given by 

where F is a twice continuously differentiable, not strictly convex function withF(0) = 0 
and limx+WF'(x) = +W. Suppose that a phase transition of the first order occurs for 
the fermion gas, i.e. 3pk E R such that 
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liml P ~ P ,  C L ) = P ;  <pk < p :  < p i  = lim PB(P, CL). 
@ t @ B  @LI@B 

Proof. Since there is a phase transition of first order at p =pk for the fermion gas, 
it follows that 

vx E R + : A ~ ( x , ~ ~ ) ~ A ~ ( P ~ , ~ : ) = A ~ ( P ~ ,  p ; ) = ~  (35) 
and 

or 

PL (Pk) +F'(pk) - c ~ k  = FL (Pi)  +F'bE) - P: = 0. (36) 
We have to prove that for all p E R, A B ( x ,  p )  never attains its minimum value in the 
interval [pk, p i ] ,  which means that for all p E R and for all x E [pk, p; ] ,  PB(P, p )  # x, 
or, that there exists a pk such that 

liml b B ( P ,  p ) = p k  <pk and liml PB(P, CL) =pk >pi .  
&Lt@B @ l @ B  

Let p i  = p k - ( p : ( p k ) - , u b ( p i ) )  and for later use, p i  =pk-(pL(pk)-pb(pk)) .  
Then 

2 3 
Pk < C L ;  and D B ( P ,  p B ) < p B ( P ,  @ B ) *  

The strategy of the proof consists in first proving that there are two cases to consider: 
p; < p ~ ( p ,  p i )  or pB(P, p i )  <pk .  Then, for each of these possibilities, we prove that 
for all p E R and for all p E [pk, p:] we have p # pB(P, p) .  

Now, we proceed to the proof of the first statement. We look for the minimum 
Of A B ( X ,  pk)'B(X). 

B'(Pk 1 = p L ( P k )  +"k) - CL k + (CL; ( P i )  - p b (P% 

= (CLL(P3 -CLL(pi)) - (cLL(Pz.) -cCIB(pk)) > 0 
where we used (36) to obtain the second equality. Thus B is strictly increasing at pk, 
which implies that there exists an x1 < pk with 

B(Xl)<B(Pk).  (37) 
Furthermore, define 

1 C b )  =AF(x, p ~ ) - B ( x ) .  
Then 

C ' ( X )  = (CLL ( X I  - w L ( X I )  - (CLL ( P 3  - CL L ( P ; ) )  

A&, P ~ ) - B ( P ~ ) ~ A F ( P ,  C L ~ ) - B ( P )  

and C'(x) s 0 for all x s p ; .  Therefore 

for all p E [pk, p i 1  

or, using ( 3 3 ,  

( p )  B (Pk) +AF(P, pk) -AF(Pk, p k)  a B (Pk) for all p E [pk, p i ] .  (38) 
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This means that for all p < p2) : AB(x~, p) <AB(p, p), V p  E [pk, p i ] .  Combining the 
results of (a) and (b), we get that for all p E R and p E [pk, p i ] ,  &(fly p )  # p holds. 

(2) If pB(& pB) < p i ,  we will again distinguish two cases. Therefore, we look for 
the minimum of AB(x, p i )  = D ( x ) .  Then 

2 

D'(pE 1 = ( p i  (pz. ) - CL L (pk )) - ( p  ; (pi  ) - F L (pi 1) < 0 

3 y l  > p i  such that 

EYx) = (pi ( X I  - pb (x)) - (pr. (Pk) - p b ( P k ) )  

which implies that 

m y 1 1  <mi). 
Also, let E(x)=AF(x, pk) -D(x) .  Then 

and E'(x) > 0 for all x > p i .  
Hence, analogously as for AB(x, p i ) ,  one finds 

for all p E [Pk, p i ] .  

3 y l > p ;  such that for all p ~ [ p k , p i ] : D ( p ) ~ D ( p i ) > D ( y ~ ) .  

(42) 

(43) 

Combining (41) and (42) yields 

3 This means that either pB(& p i i < p k  or pB(/3, pi )>&.  If pB(p, pB)<pk we again 
distinguish (a) p S p i ,  (b) p > p ~ .  

(a) p c p i  : pB(& p )  is an increasing function of p ; therefore, 

for all p s p i .  3 AAP, P)QPB(P,  C L B ) < P ~  

(b) p > p i  :using (43), one finds as in (lb) 

AB@, p 
(a) and (b) again yield the result. 

ABbk i f L )  >AB(y  1, p 1, for all p E [pk, p i ]  and all p > p i .  

The last case we have to consider is pB(p, p i )  < pk and FB(P ,  p i )  > p i .  Then 

We still have to prove that for all p E ]pi, p i [  and for;?ll p :[pk, p;];pB(py p )  Zp .  
Take any p E ] p  i, p i [ and choose PO E 88 such that p = p F - ( p  F (PO) - p B  ( P O ) ) .  It can 
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As a byproduct, we obtain immediately from theorem 3.6 the following result. 

Corolfary 3.7. Let (Tc)B(F) be the temperature above which there is no phase transition 
of the first order. Then ( T c l ~  3 (Tc)~. 

Proof. For any T s ( T , ) ~  such that there is a phase transition for the fermion gas, 
there is also a phase transition for the boson gas. Therefore ( S (T&. 

Proposition 3.8. With the Hamiltonian (34), one has that (i) P B ( F ) ( ~ ,  p )  is an increasing 
and convex function of p and therefore continuous. (ii) P B ( F ) ( / ~ , ~ )  is everywhere 
differentiable with derivative dpB(F)(P, p) /dp  = &F)(P, p )  except at the points of 
discontinuity of the map p --* $B(F)(& p ) .  

Proof. (i) follows from the convexity of P B ( F ) ( A ~ ,  P,  p )  and limn-,m P B ( F ) ( A ~ ,  P ,  p )  = 
pB(F)(P, p )  (lemma 3.5). (ii) follows directly from the lemma of Griffiths (Hepp and 
Lieb 19731, and the remark that limL+m ~ B ( F ) ( A L ,  P ,  p )  = PB(F)(P, p )  for all p, points 
of continuity. 

Before, we always had a one-to-one correspondence between p and the fermion 
density. However, when phase transitions of the first order occur, this is not the case 
anymore. Therefore, it is more appropriate to define pB(F)  as a function of p and p 
instead of P and p. If we want to denote the pressure as a function of p, we use 
further on the notation &@, p ) .  

Let IB(F)  be the countable index set labelling the set of discontinuity points of the 
map p -*PB(F)(P, p) .  We denote with p & F ) ,  i E IB(F), the discontinuity points. At these 
points 
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then 

Finally, remark that if pB(F)(P,  p )  is differentiable with respect to p at a point po 
and P = PB(F) (P, PO),  then 

Theorem 3.9. With the Hamiltonian (34) and with the conventions for the pressure 
one has 

PB(@I P)<PF(@, p ) ,  vp E R;, v p  > 0. 

Proof. (i) Suppose there are no phase transitions for the boson gas (or T > ( TJB where 
(TAB is defined as in corollary 3.7). 

Then the proof goes along the same lines as in theorem 3.4. (ii) T s ( T J B :  suppose 
there are phase transitions for p = ph (i E IB), where pB(& p )  jumps from p :  to pg.  

If p: s p  s p g ,  we have: 
(a) if there is a phase transition for the fermion gas, i.e. pF(p, p )  jumps from pk 

top: a tpk ,  then3jEIBsuchthatpz<pk<p:<p2B’(theorem3.6); 
(b) PB(F)(P, P )  is constant for all p E b&), &(F)]. Therefore, P B ( P ,  P)<PF(P, p )  

for all P E [P:, 
If pk[p:, p g ]  for all i E I B  and p f p ,  where pc is the critical density for boson 
condensation, it can be proved as in theorem 3.4 that 

l i  if PB(P, P B  )<PF(P, P:).  

where the function f is as above. 
Again, for p = pc special care should be taken and we have to use an argument 

similar to the one in theorem 2.2. Using this, we can again apply our argument as in 
theorem 2.1 to obtain the result. The picture of PB(F) as a function of the density p 
in the case of phase transitions looks as in figure 1. If F(n)=-ux2+bx4 it can be 
seen that there is maximal!y one platform where PB(F) is constant as a function of p. 
In this case the phase diagram resembles the phase diagram of water (if we don’t 
take into account the solid phase). 

We treated here imperfect models with a Hamiltonian as in (34), where F is twice 
continuously differentiable everywhere. The results do not change if F is twice 
continuously differentiable almost everywhere with respect to the Lebesgue measure. 
In this case, phase transitions of the second order may also occur. The proof of 
theorem 3.9 goes along the same lines, only some care should be taken for those 
points p where a phase transition of second order occurs. 
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Figure 1. The pressure as a function of the density for general mean field interactions. 
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